
Butterworth Filters 
 
 
 
Butterworth filters, often called maximally flat filters, achieve a frequency response of the form: 
 

 

 
where N can be any positive integer.  To see how this can be achieved, we first consider the related 
transfer function  
 

 

 
Since the denominator is a 2*Nth order 
polynomial, the root (poles) satisfy  .  
These roots can be expressed as: 

 where  and m = 1,2 …N 

.  These poles are shown in the figure below.  Note that 
the poles are in the left-half plane, and poles 

are in the right-half plane.  Hence, can be 
written in the form: 

 
 

 

 certainly, has the maximally flat rolloff that we want with w, but has the problem of having 
RHP poles, which would make it unstable.  But when ,  
  

 

 
Which shows that the contribution of the LHP and RHP poles are the same when  , so a 
transfer function with just the LHP poles would have a response: 
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The polynomial where the roots are given by the expression above are 
called Butterworth Poynomials.   Recognizing that all the poles but one (when N is odd)  are 
complex conjugate pairs, these polynomials can be expressed in factored form as: 
 
 
 

 
 
 

Finally,  for an arbitrary break frequency wb, the Butterworth transform function would be 
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